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Slow viscous motion round a cylinder in a simple shear 

By F. P. BRETHERTON 
Trinity College, University of Cambridge 

(Received 11 September 1961) 

The two-dimensional steady flow of an incompressible viscous liquid round a 
circular cylinder is described in terms of matched expansions valid asymptotic- 
ally at low Reynolds number, the velocity field at  large distances being a com- 
bination of a uniform simple shear and a uniform stream, relative to axes moving 
with the centre of the cylinder (but not rotating with it). 

An infinite number of terms are computed and summed. There is a transverse 
force on the cylinder, independent of its rate of rotation to the approximation 
considered here. At moderate and large distances the balance between con- 
vection and diffusion of vorticity is dominated by the shear, being quite different 
from that in a uniform stream alone. 

The rate of longitudinal diffusion of a substance released from an instan- 
taneous line source in a simple shear alone is enhanced. Round a maintained 
line source for which the local convection velocity is parallel to that of the shear 
the concentration falls only algebraically with distance in all directions, though it 
islargest in twinwakesextending directly bothupstream anddownstream. If there 
is superposed a lateral convection, however small, at sufficiently large distances 
the concentration is exponentially small outside a wake centred on half a parabola. 

The two-dimensional perturbation velocity round any obstacle held in an 
unbounded simple shear at any Reynolds number is, a t  a sufficient distance, an 
irrotational cross flow decreasing as the inverse two-thirds power, associated with 
twin shear layers extending upstream and downstream. If there is a uniform 
lateral motion at  large distances this conclusion is completely altered. 

1. Introduction 
In  this paper we consider the steady, two-dimensional motion a t  low Reynolds 

number of an incompressible viscous fluid past a circular cylinder, the velocity 
at  large distances being described by a uniform simple shear. The analogous 
problem when the velocity at large distances is given by a uniform stream is of 
some importance and has a long history. A successful treatment valid for small 
values of the Reynolds number was given by Oseen, but several attempts to 
improve his approximation were incorrect. What is apparently a satisfactory 
method has been given by Proudman & Pearson (1957), and this will be followed 
here. 

The author is unaware of any analysis which considers in a thoroughgoing 
manner inertial effects associated with an obstacle in a viscous uniform shear. 
Kawaguti (1956) investigated the two-dimensional wake, but by regarding the 
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shear as a perturbation on a uniform stream. This approach misses many of the 
interesting features, for at sufficiently large distances the shear must dominate. 
Lighthill (1957) has given an account of the secondary flow in an inviscid shear, 
showing how truly three-dimensional disturbances differ radically from those in 
which the vortex lines are not stretched in the motion. In  this paper the con- 
servation of one component of vorticity is of basic significance, and a t  large 
distances the secondary velocities are determined by a balance between convec- 
tion and diffusion of this component. The analysis takes the form of an expansion 
valid in ascending orders of the Reynolds number, but many of the features of 
the outer inertial regime are applicable whatever the Reynolds number. In  
many ways a discussion of a three-dimensional motion would be more interesting, 
but the analytic difficulties are considerable, and there are sufficient features of 
this problem to deserve the explicit presentation given here. 

To avoid complications about past history the motion is taken to be steady 
relative to an origin at  the centre of the cylinder. At first the latter will be 
assumed fixed, but later allowed to rotate with angular velocity comparable 
with that associated with the shear. If the motion is to remain steady the 
cylinder must be of circular cross-section. It would be of interest in view of the 
lateral migrations of spheres in a tube reported by Segre & Silberberg (1961) 
and Christopherson & Dowson (1959) to consider also the effect of a wall bounding 
the shear, but the addition of a further dimensionless parameter would com- 
plicate the results, and must be left for further study. The orders of magnitude 
of the parameters in this problem have been deliberately restricted so that the 
shear is the dominant feature of the flow. This is fundamentally different from 
that behind a cylinder in a uniform stream, which cannot be deduced as a special 
case. A synthesis using similar methods might be successful, but would involve 
complication. 

We take axes fixed with the origin at the centre of the cylinder, which has 
radius a. At infinitely large distances the components of fluid velocity are 

($;,, - $ ; I )  = (Gy’+ U’, ?”). 

The Reynolds number is defined as 
R = G u ~ / v ,  

and the forces on the cylinder also depend on the two dimensionless parameters 

U = U’/Ga, V = V’/Ga. 

These definitions in terms of the radius of the cylinder and the rate of shear 
underline the fundamental difference from an approach based on perturbations 
from the Oseen problem. We consider first the case when the velocities on the 
surface of the cylinder vanish. Then the dimensionless stream function $ = v / G a 2  
is a solution of 
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We look for an approximate solution for $, valid asymptotically as R -> 0. 
We must be careful to define this limit, and will at  first confine our attention to 
the case when U ,  V are of order unity as €2 tends to zero. This condition will 
subsequently be relaxed to U ,  V = O(1og R)N for any N.? If, however, U and V 
become as large as O(R-*) or as small as O(R*) the approximation becomes 
either invalid or irrelevant. I f  N < 1 the flow near the cylinder is to a first 
approximation described by the Stokes solution for a uniform shear relative to 
which the cylinder is locally a t  rest. If N > 1 it is dominated by that appropriate 
to a uniform stream at infinity. In  either case, wherever inertial effects are 
appreciable the shear is most important. 

If the cylinder is rotating with angular velocity Q’ = GQ, where Q is of order 
(log R)N the difference from the previous case is almost trivial. The couple on the 
cylinder is altered, but the forces on it are not. 

$§ 5 to 7 of this paper are devoted to a discussion of diffusion from a 
maintained line source in a uniform shear, and its relevance to the flow at 
moderately large distances from the cylinder. Both differ fundamentally from 
the analogous features of the Oseen problem. In $ 8  a brief outline is given of the 
flow a t  extremely large distances, where the remainder of the analysis ceases to 
be uniformly valid. 

2. The Stokes solution 

left with the Stokes equation 
If we neglect inertial terms altogether, and put R = 0 in equation (1)) we are 

V4$= 0, r > 1. 

The general solution of this which satisfies the condition of zero velocity on r = 1 
is a linear combination of terms of the form 

r2 - 2 logr - 1, (r2 - 1) logr, 

(rlogr-&r+-) 1 sin O, (r3-2?-+;) 1 sin c o s ~ ,  
2r cos 

and ( v ~ - ~ + ~ )  n n-1  sin cosnO, 

Of these, that which diverges least rapidly as r -+ co is 

r log r - &r + - 
If we are to have 

$ N By2 = $r2( 1 - cos 20) + o(r2) as r --f co, 
the solution of the Stokes equation is 

$ = 

(2) 
I + ( A  cos o +B sin 0 1  rlogr - +r + %). ( 

* The abbreviation log is to be understood to mean the Napierian logarithm throughout 
this paper. 

35 Fluid Mech. 12 
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This is indeterminate to the extent of the two constants A ,  B. It is not possible 
to refine the outer boundary condition to 

9, = y +  U+o( l ) ,  
$ z = - V + o ( l )  as r + m ,  

and still find a solution in the form of equation (2)) for the derivatives of the 
term involving A ,  B diverge logarithmically as r -+ 00. 

The Stokes solution to the flow round a cylinder in a uniform shear is thus 
unsatisfactory, because it is not possible to determine it uniquely in a sensible 
manner. The reason for this inconsistency, as is well known, is that the Stokes 
equation is not a good approximation to equation (l), however small R may be, 
in the region where we must apply the outer boundary condition. For if we sub- 
stitute from equation (2), the neglected non-linear terms are of order Rr(9/r3)  
whereas those which have been retained are of order $/r4.  The approximation 
is only good provided Rb < 1. 

3. The expansion procedure 
A way round this difficulty has been given by Proudman & Pearson (1957). 

We do not seek to extend the Stokes solution outwards, but regard it instead as 
the first term of one of what at  first sight are two distinct expansions of the exact 
solution to the problem, which, taken together, yield an approximation which 
may be made arbitrarily good by taking sufficiently many terms. In  this case 
the procedure gives unique expressions in which the errors are apparently smaller 
than O(1og R)-N for all N .  This claim is, however, overdrawn; the expressions 
obtained by truncating the expansions after a given number of terms satisfy 
approximately the exact equations of motion and the boundary conditions, with 
residuals which are bounded uniformly in separate but overlapping regions to 
known order in the Reynolds number. The expressions and their derivatives also 
correspond to the same order at all points on some contour in the regionof overlap. 
But there is no guarantee that, for any given positive Reynolds number, the 
series, formed by taking an infinite number of terms in the expansions, will 
even converge, let alone converge to the true solution. Thus they are at best 
exact solutions of approximate equations, and are asymptotic representations 
of a function which is not necessarily anything like any solution of the exact 
problem. This particular gloss runs through and through mathematical physics, 
and though it must be recognized, it is not a limitation peculiar to this analysis. 

If $(R, r ,  0) is an exact solution to equation (l), we assume that as R --f 0 the 
space round the cylinder divides into two separate but overlapping rbgimes. In  
the first Rb < 1 and the Stokes equation is a good first approximation to equa- 
tion (1). In  the outer ‘Oseen’ region Rrg 2 O(1) and the inert,ial forces must be 
taken into account. However, for sufficiently small R, the velocities in this 
region are small perturbations from the uniform shear 

9 = *y2+ u y -  vx, 
and a linearized version of equation (1)) the analogue of Oseen’s equation, is 
a suitable first approximation. 
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We introduce strained co-ordinates 

so that 

@ = +r = 0 on r = 1 for all R, 
and 

where 

The inner expression for $ is valid asymptotically as R + 0 for fixed r ;  the outer 
one for Y for fixed p = Rb.  They are thus quite different, but are matched in the 
intermediate region r -+ 00, p -+ 0. We determine successive terms $,(r, O), 
Y,(p, 0) alternately, starting with Yo. 

y?,, Y, satisfy differential equations found by substituting in equations (3) 
and (4) the expression obtained by truncating the expansions at that stage, 
followed by equation of terms inf,(R), F,(R). In  general these equations depend 
on the previous terms in the expansions, but in this problem, because of the 
particular form of thef,(R), Fn(R) it will be found that to any finite order 

V4@,=0 ,  r > 1, 
a 

a5 
q-V2Yn-V4Yn = 0, p > 0. 

We also make each @, satisfy the boundary conditions on the cylinder exactly, 
and each Yn the outer boundary condition to correct order, The behaviour of 
@,, Y, as r -+ co, p -+ 0 is taken to be at  most an algebraic or logarithmic singu- 
larity, and any arbitrary constants are determined by the requirement that 
+(r), (I/B)Y(Rb), are expansions of the same function. 

To match, we expand each term of 

as a power series in p, preceded by a finite number of powers of l/p, and with a 
possible factor of logp. These series should be valid asymptotically as p -+ 0. 

We also expand 111 

Cfn(R) 4n(r )  
0 

as a similar series in r ,  valid as r -+ co. If we put p = Rir and N = M = 00, 

these expressions must be identical. More precisely, each term of the first expan- 
38-2 
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sion has a definite order in R and r ;  it must be one of the fn(R) times a term in the 
expansion of $n(r) and conversely. A slight exception to this statement may arise 
if, for example, FN+I(R) = $"(R)/log Ri and (l/R) FN(R) Y&) contains a term 

like (1/R) Tv(R) (R*r)p. This need not appear anywhere in xf,(R) $n(r) if it is 
cancelled by part of 

m 

0 

However, with simple power-law and logarithmic series expansions this can- 
cellation can only occur between a term and its immediate successor; otherwise, 
the matching procedure can be applied unambiguously for any finite values of 
h', M to any term within the overlap of order in R. 

In  this way, Yo, $o, F,, Y,, f l ,  $1, etc., can be determined successively and 
any arbitrary constants are fixed either immediately or at  most a few stages 
further on. This procedure is now fairly standard, and we will present only the 
result, without entering into the detailed arguments showing why the terms 
must have the values given here. Indeed, in view of the assumptions about the 
relevance of a solution of this form, there is little point in proving uniqueness. 
However, it  is worth pointing out that the results are apparently determinate, 
providing we assume 

( a )  that every single-valued solution of equation (5) satisfying $, = $nr = 0 
or r = 1, and $, = o(r1ogr) as r + GO is identically zero; and 

( 6 )  that every single-valued solution to equation (6) for which Y, = o(p1ogp) 
as p --f 0 and Y,,, Y,), -+ 0 as p + GO must be a constant. 

4. The expansions 
These are found to have the form 

R* 
Y,+ ... +------Y,+,+..., 

R* 
Y = Y,+R*Y,+- 

log R* (log R*)" 

The term in 1, is omitted to keep the nomenclatures parallel. 

outer boundary condition to correct order in R: 
Yo@) represents the shear, and is an exact solution of equation (4) and the 

y - 1 2 .  
0 -  271 

The next term in the outer expansion represents a uniform stream, 

R*Yl = Rfr{ 7771 - V[>. 

These two terms together are also an exact solution of equation (4)) but on sub- 

stituting x F,(R) Y J p )  into (4) and equating coefficients of R)(log R&)-, it is 

immediately clear that all subsequent terms to any finite n satisfy equation (6). 
This slightly surprising result arises because the change in order, R*, between 

N 

0 
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the first two terms is greater than that, (log R+)-,, between the second and any 
subsequent term. It underlines the dominance of the shear in the outer, Oseen, 
region. 

The first term of the inner expansion is the Stokes solution ( 2 )  with A = B = 0: 

$o = 

If A or B were non-zero the logarithmic term 

R 

(written here in terms of p)  would have to be partially matched by a term in the 
outer expansion which 

-RfrlogR*(AcosB+BsinB)p as p + O .  

To this order in R there is no contribution from the outer boundary condition, 
so, by the uniqueness assumption (b ) ,  A and B must be zero. The only part of 
$o which features in the outer expansion to any finite order is $r2( 1 - cos 26) = *y2. 
The largest remaining term, - 2 log r ,  becomes, on substitution of pR-* for r ,  
and on multiplication by R, a t  most O(R log R) for fixed p, which is smaller than 

Ri(logR*)-n for all n. Substitution of Cf,(R) $,(r) in equation (3)) and equation 

of powers of (log R*)-n shows that $n satisfies equation ( 5 )  for all n. This is similar 
to the inner expansion for a cylinder in a uniform stream (Proudman & Pearson 
1957). 

The linear term R*( U y  - V t )  does not appear in the inner expansion, being 
cancelled when p is put equal to R b  by part of RB(log R*)-l Y2(p) .  The remaining 
terms are made up of linear combinations of the fundamental solutions 

M 

0 

of the Stokes equation and the inner boundary condition, and of the two solutions 
0 ( p ,  6 ) )  @(p, 0) of equation (6) for which 

O,, 0,) CD,, CD7 + 0 as p + 03 

0 - plogp cos B + Pp cos 6 + Qp sin B + O(p2), 

CD N plogp sinB+SpcosB+TpsinB+O(p2) as p+  0. 

The components 0,) CD7 of velocity are logarithmically infinite at  the origin, 
and the constants P,  Q, S, T, which describe the non-singular part of the 
velocities there, are completely determined by the logarithmic character of the 
singularity. Their values will be derived in 3 7. 

and 

= (C,cos6+Dnsin6) 
We put 

Yn+l = A,O+B,@. 

Terms in the expansion of 0, CD which are O(p2) as p + 0 do not feature in the 
inner expansion to any finite order, for (1/R) R*(log R$)-" (Rb)2 is smaller than 
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(log RJ)-m as R --f 0 for fixed r for all n and m. For similar reasons terms of order 
l / r  in +, can be ignored in the matching process. The coefficient of (logRt)-n 
for fixed r in 1 N+i 

- c Fn(R)yn(RJr) R O  
is {(-V+Al)cos8+(U+Bl)sin8}r if n = 0, 

and {A,r log r + (A,P + B,X + A,,,) T }  cos 8 
+{B,rlogr+(AnQ+B,T+B~,,)r}sin8 if 1 < n < N .  

These are the same as the corresponding terms in 

M + l  

0 
2 fn(R)+n(r)  

if - V + A l  = 0, U + B ,  = 0, 

and C, = A,, D, = B,, 

A,P+B,S+A,+, = -*C,, A,Q+BnT+B,+l = -*I),. 
Thus we obtain the recurrence relations 

} (7) 
An+1+An(P++)+BnX = 0, B,+,+Bn(T++)+A,& = 0, 

A ,  = V ,  B I Z  - U. 

These relations are a necessary and sufficient condition for a satisfactory match 
up to terms of any finite order. It will be shown in Q 7 that 

P = - 1.410, Q = 0.409, S = - 1.685, T = -0.948, 

so that equation (7) has the solution 

A ,  = -.9?{(EU+PV)rn-1}, 
B,n = -L%"((HU+KV)rn-l}, 

where r = 0.679 + 0.7983 is one root of 

( T + P + J ) ( T + T + $ ) - Q S  = 0, 

and E = - 2.113, P = - 1 + 0.2893, H = 1 + 0.2893, K = - 0.5133. ( 8 )  

We have thus determined an infinite number of terms. We may go even further 
and sum them to yield 
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for all positive N .  It is remarkable that it has proved possible to evaluate an 
infinite number of terms with only a finite amount of work. In  the similar pro- 
blem when there is no shear only the first two have been evaluated, although 
Imai (1951) has gone to higher order in the Oseen expansion. It now becomes 
relevant to ask what comes next. The expansions cannot terminate altogether 
at this stage, and inspection reveals that the largest neglected terms are of order 
R*(log R*)-l for fixed r,  and of order R log R* for fixed p. We will not investigate 
further terms, but they would appear to have the structure in the outer expansion 
of a series of descending powers of log R* multiplied by R and R* times a similar 
series in the inner one. 

The forces on the cylinder are immediately evaluated from the inner expansion. 
There is a couple, but no force, due to the q90 term of magnitude 

27rpa2G, 

and a force, but no couple, arising from all the other terms, with components 

H U + K V  
7 - log R* 7 - log R* 

We notice that, in the limit as (log R*)-l+ 0 and r - log R* becomes effectively 
real, this force becomes 

1 2  _~ 47rp (U',V')+O(-) , 
log R* log R* 

which is that on a circular cylinder in a uniform stream ( U', V'). This is, however, 
misleading, because the Reynolds number R* = (Ga2/v)* has a quite different 
meaning. The force is only in the direction of motion for (log R*)-l sufficiently 
small. To higher approximation there are lateral forces, due to the motion of the 
cylinder interacting with the shear. 

If the cylinder is rotating with angular velocity R' = GQ, where R is of order 
unity, the only difference in the whole expansion to the approximation con- 
sidered here is the addition of a term R log r to $o. This affects the outer expan- 
sion only to order R log R* for given p, and does not feature in any finite term. 
Even if Q were O(1og R*)N for any N it would still only appear in Po, so rotating 
the cylinder with angular velocities of this order gives rise to no additional 
Magnus effect; the couple on it changes, but the transverse forces are unaltered. 

Finally, it  should be noticed that if U ,  V are allowed to be of O(1og R*)N as 
R --f 0 the only change in the expansions is to increase the order by this amount 
of all terms after the first. Neither equations (5) and (6), nor the matching 
process, are affected. If N > 1, however, the dominant motion in the neighbour- 
hood of the cylinder is that appropriate to a uniform stream 

( -  VcosB+UsinB) 
1 

log R* 
_ _ _  

If N < 1, the Stokes solution for a uniform shear is larger. In  either case, how- 
ever, the shear has a dominant influence in the Oseen region. 

If U and V are of order Rk as R -+ 0 the expansions given here become irrele- 
vant, for all the calculated terms are as small as the errors. Likewise if U or V 
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are too large, i.e. O(R-*), the problem is radically altered, and it is necessary to  
start ab init io,  and find expansions with a quite different structure. The errors 
in this treatment are essentially 

O(R4logR4U) = 0 

so it is not possible to consider the limit G -+ 0 for given small U'alv. The problem 
of a cylinder in a uniform stream is quite distinct, and cannot be derived from 
these results. 

5. Diffusion from a line source in a uniform shear 
The remaining, and most interesting, task of this paper is to investigate the 

solutions 0, CD of equation (6), and to evaluate the constants P, Q ,  S and T .  
Equation (6) shows that the vorticity V 2 0 ,  V2@ is diffusing in and is convected 
by a uniform simple shear, the stream velocity past the origin being zero. Near 

so there is a doublet of strength - 2, orientated in the 0 6  direction for 0, and 
parallel to 07 for CD. 

This prompts consideration of the diffusion of any 'substance' (of concentra- 
tion <) from a line source at the origin, in a stream parallel to 0 5  with velocity 
given by 7 + C. The approach given here was not that originally used, but in- 
volves substantially less analysis. It was suggested to the author by Dr A. A. 
Townsend. Expressions for V 2 0  and V2CD are then obtained immediately by 
differentiation with respect to 6,  and with respect to 7 and C. 

First we consider the unsteady problem of a cloud of unit amount of diffusing 
substance instantaneously released a t  the origin at  time t = 0, satisfying the 
equation 

Here we have taken axes moving with the centre of the distribution, i.e. C = 0. 
Initially, diffusion is dominant and 

<L + ?& - v2< = 0.t (11 )  

(12) 

The curves of equal concentration are circles. However, as the length scale of 
the distribution increases, convection must be taken into account, which draws 
out the circles into ellipses, and rotates them. But an elliptical distribution re- 
mains of this type under the action of diffusion alone, and therefore presumably 
also if simultaneously subjected to a uniform rate of strain. A general trans- 
formation which takes this into account has been given by Novikov (1958),  and 
it may be verified that an exact solution of equation ( 1  1 )  is 

For small t ,  this reduces to equation (la),  and it thus represents the distribution 
diffusing from an instantaneous line source. 

t We assume that the motion, and in particular the equation of continuity, is un- 
affected by the presence of the diffusing substance. 
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To obtain the distribution for a maintained line source, described by 

with 5+0 as p- fco ,  

<--1ogp as p + O ,  

we superpose solutions for the instantaneous source, allowing for convection 
downstream with velocity C. An amount 2nSt of substance, released a t  time t 
before the moment under consideration, will make a contribution described 
by 2nSt times expression (13), with 5 replaced by ( -Ct .  Integration over all 
past times gives 

Equation (15 )  is the main result of this section, but, before going on to derive 
expressions for 0, <D, it is worth considering some of the properties of this 
distribution, which throw considerable light on the dynamics of the more general 
problem. 

6. Source resistance and wake 
The analogous distribution round a maintained line source in a uniform stream 

is well known, being 

where K O  is the modified Bessel function of the second kind of order zero. There 
are two features about this distribution which are generally of interest. The first 
of these is 2 = Lt  {<+logp) = -log*Cy, 

P+O 

y being Euler’s constant = 0.5772 . . . . Z is a measure of the resistance to diffusion 
from the source, for if the latter is approximated by a small cylinder of radius a, 
the value of 6 on the surface is 2 -log a, The second feature is the wake. If we 
consider points a t  large distances in any direction except directly downstream, 
5 is exponentially small. But if, on the other hand, 5 is positive, and q/@ is kept 
constant and equal to a, 

< N (n/C)+ exp ( - iCa2) 5-4 as 5 + 00. 

< is thus concentrated in a well defined wake along the positive (-axis, with a 
Gaussian profile of a width of order (tic)$, outside which it is exponentially small. 

I n  this section we compare the corresponding features when a shear is present. 
They are both significantly modified. To obtain the value of Z from expression 
(15) we make use of a device which we will also need later. If we put 5 = q = 0 
the integral diverges logarithmically a t  t = 0. For other values of p, however, 
it is always convergent there, for the exponent may be written 

- (P2/4t) +fK 7, t ) ,  

where f ( ( ,q , t )  is an analytic function of ( [ ,q , t )  in any neighbourhood of 
( 5 , ~ )  = (0,O) and for all positive t including0 and co. Also 

f(O,O,t) = -*C2t/(l+&t”. 
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To find Z we subtract a known function which suffices to make the integral 
converge even if p = 0. The simplest such function is 

- -1ogp-logiy as p -+ 0. 

Then Z =  Lt (f;-K,-log+y) 
P - t O  

This shows, incidentally, that expression (15) has indeed the required log- 
arithmic behaviour near the origin. For large C, significant contributions to the 
integral for Z come both from very small values of t, of order 4/C2, whence we 
have a contribution 

and also from regions where t is large, of order 3C2, whence there is a term 

Thus, for large C2, 

and to a first approximation we recover the resistance of a source in a uniform 
stream. When C = 0, 2 = 210g 2 + $log 3 - Qlog y = 1.372, but for other values 
of C it  must be evaluated numerically. The results are plotted in figure 1. 

For small C ,  the effect of the shear is to make finite a resistance which would 
otherwise be infinite. The convection does indeed carry away a net amount of 
diffusing substance from the source. But it should be noticed that for ICI > 0.7 
the resistance is larger than it would be in the absence of shear, so that the shear 
retains diffusing substance in the vicinity of the source, which would otherwise 
be carried away by the uniform stream. Furthermore, the term 1/J3C2 in the 
expansion of 2 for large C which is given above arises from large values of t ;  
in other words, the increase in resistance is due to substance released from the 
source a long time previous to the moment of observation. This somewhat sur- 
prising effect arises from the profound modification of the wake by the shear flow, 
which we will now investigate. 

To obtain the distribution at large distances from the source we must consider 
asymptotic expansions of equation (15) for large values of ([, 7). We expect 
the dominant contribution to come from large values oft, corresponding to emis- 
sion from the source a long time previously. There are two distinct regimes for 
the expansion. If [ and 7 are large and of the same order, the exponent is large 
and negative unless t = 0(r2) ,  in which case the dominant part of the integrand is 
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4 3  t-2 exp ( - r2/t). This suggests holding C/q constant, and considering a formal 
expansion in powers of lql-l. If, however, 7 is O(64) for large [, other terms in 
the exponent are of equal importance. The dominant part is then 

@ exp - ( (;)2 - 3( 56) 7 3 t;, + 3 $1, 
t 2  

arising when t = O(@). The second regime thus requires 7/64 to be kept con- 
stant and a formal expansion in powers of I[/--*. 

- I  I I I L 
0 1 2 3 4 

C 

FIGURE 1. The resistance 2 of a line source in a shear flow with local velocity C in the 
longitudinal direction compared to that in a uniform stream of strength C. ---, 2 ;  

2 -1% VY. -___ 

Such expansions normally require careful analysis. In  this case it may be shown 
that the correct procedure to obtain them is simply to expand the remainder of 
the integrand except the dominant part as a power series in l / t ,  integrate term 
by term, and collect up terms of the same order in 171-1 and 161-4 respectively. 
To any given order such contributions come from at most a finite number of 
terms in the power series. The justification of this procedure will be omitted here. 
It depends on substitution of t  = lrl/s or t = 1(1&/s, and successive integrations 
by parts of the remainder after subtracting from 6 a finite number of terms of 
the power series in s. A crucial point is that the exponent in the integrand of 
expression (15) is always bounded above by a linear function of t which is nega- 
tive for all positive t and non-zero (5, r ) ,  thus ensuring rapid convergence of all 
integrals. 

The leading terms of the expansions obtained in this way are 

provided C/7 = O(l) ,  and 
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provided ?/cs = O(l),  where 

~ ~ ( a )  = JOm exp - ( a 2 ~  - 3ah2 + 3 ~ 3 )  dh ,  

Il(a), 12(a) can be reduced to incomplete Gamma functions, but for computa- 
tional purposes it is more convenient to use the relation 

Il(a) is plotted in figure 2 .  

- 6  - 3  0 3 6 

c( 

FIGURE 2. The concentration in a wake region, 

exp - (&A - 3aA2+ A3) dA. 

Several points should be noticed about these expansions. Alternate terms are 
even and odd functions of C, confirming t,hat on change of sign of each of 6, 3 
and C the distribution is unaltered. When the shear is absent there is no analogue 
of equation (17); in the comparable region 5 is exponentially small. In  this case, 
in every direction the dependence on p is algebraic. The first term of equation 
(17) does not involve the uniform stream part of the convection velocity at  all- 
it  is the same as if the source were a t  rest relative to the fluid surrounding it. 
Also, the first two terms are independent of 6, i.e. the concentration gradient for 
large values of 3 is to this approximation at  right angles to the streamlines, and 
transport by convection is at first sight negligible compared to that by diffusion. 
This is, however, not so, for the convection velocity is approximately equal to 7, 
and there is a balance between diffusion transport in the first term and con- 
vection in the third. To this order, for given ?, 5 decreases upstream. 

The second expansion, equation (18), fills in the remaining areas at  large dis- 
tances. Again, to first approximation, the distribution is independent of C with 
wakes in both directions along the 6-axis. The wake itself is asymmetric, as shown 
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by figure 2, the concentration being largest where a = 1.3 and the convection 
velocity is away from the source. For large a, Il(a) N l/a2, I,(a) N -3/a3, and 
on substitution of a = y / [ J  we recover the first two terms of equation (17). Thus, 
although there are two wakes, g is not exponentially small outside them, and it 
would be less misleading to describe the wake as extending over all space. 

These results, which are in complete contrast to those where the shear is 
absent, are readily understood on consideration of the distribution in a cloud 
instantaneously released a t  time t = 0 (equation (13)). In  a simple shear such 
a cloud is carried into an elliptical distribution, the major axis of which is nearly 
parallel to the streamlines. After a large time the major axis grows as tg,  whereas 
the minor axis only as t t  . The substance diffused to a region of greater convection 
velocity, is carried rapidly along the streamlines, and diffuses again laterally 
into the region of smaller velocity. The longitudinal rate of diffusion is enhanced; 
the lateral rate is unaltered. This is an example of accelerated longitudinal 
diffusion in a non-uniform stream first described by Taylor (1953). 

The centre of such a cloud is always carried downstream less rapidly than 
the cloud expands, so the concentration at  the point of release falls only algebraic- 
ally, not exponentially with time. For a maintained source this background 
concentration arising from substance released a long time previously leads to an 
increase in the resistance Z to diffusion from the source, and superposition of 
such clouds results in a distribution a t  large distances like that described by 
equations (17) and (18). Even if, because C is large, a single downstream wake is 
formed in the vicinity of the source the accelerated diffusion leads to transport 
of substance ahead of the source, and a t  large distances two symmetrical 
wakes. 

If there are lateral boundaries to the shear, even at quite large distances, these 
conclusions may be seriously modified. An impermeable wall would alter the 
physical process of diffusion and convection, and might substantially alter the 
concentration in the neighbourhood of the source. 

7. The functions 0, @ 

After this digression we return to the fundamental solutions for the outer 
expansions. These represent the perturbation stream function at distances so 
large that the cylinder has shrunk to a point, and the inertial terms in equation 
(1) are fully comparable with those describing viscous effects. It will be shown in 
the next section that in some circumstances they describe the motion right out 
to infinity, and in any case as far as p = O(R-8). As remarked in $ 5 ,  the dis- 
tribution of vorticity associated with them is that diffusing from dipoles of 
strength - 2 a t  the origin, in a uniform shear in which fluid a t  the origin is at  rest. 
We obtain it from equation (15) as 

(19) 
v20 = -2 -  a< 

a t  , 

and 

evaluated when C = 0. 
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A formal solution to the second of these is 

where V2W is the value of the right-hand side of equation (20), evaluated a t  
( E ' ,  7') and the integral is over the whole plane - co < c, 7' < + 00. Unfortunately, 
this integral is divergent, and it is simpler to use the derivatives 

These are absolutely convergent for all (c ,  7) except ( 0 , O )  and if we exclude 
neighbourhoods round (E', 7') = (0 ,O) and infinity and integrate by parts 
before differentiating with respect to 7 and [ under the integral signs, we may 
show that these expressions are indeed derivatives of a single function a([, 7) 
which satisfies equation (20). 

We now investigate the behaviour near the origin of the function @ given by 
equation (21). We anticipate that 

a 
@ - plogpsino - -(Jp210gp)+O(p), 

a7 

so, as in 5 6, we subtract a known function which has this behaviour. Now 

a 
a7 

x = -{-22Ko(P)-21ogp) 

N plogp sin6+(log&y-+)psin6+o(p) as p -+ 0 

is the solution of 
d 

v2x = -{ - 2KO (P I> a7 

which has this property and is also O(l/p) as p -+ co, so by Green's reciprocal 
theorem it may be written 

If we subtract the first derivatives of this expression from equation (21), sub- 
stituting for V W '  from equations (20) and (15), the resulting integrals with 
respect to E' ,  T', t' converge absolutely for all ( 5 , ~ )  including (0,O).  Thus CD does 
indeed have the correct behaviour at the origin, and 

= *logy - 3  log 2 - *log 3 - 3. 
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In a similar manner we have 

I 
I 

P = $lOgy-~lOg 2-&10g3-* = -1.410, 

Q = 2~19  - 11243 = 0.409, 

S = - 4n/9 - 112 J3 = - 1.685, 

T = $logy-$log2-$10g3-& = -0.948. 

At  large distances from the origin CD does not tend to zero, though its derivatives 
do. The structure of the asymptotic expansion of CD as p -+ 00 is complicated, but 
it is straightforward to obtain the leading term. For equation (21) shows that 
the contribution to CDt, CDv from the vorticity in any finite region of the space S’ 
is O( lip). Of more importance are contributions from the vorticity wake which 
extends to infinity upstream and downstream from the cylinder. In  this wake 
we have, from equations (18) and (ZO), 

V2@ = $1; ( 6h2 - 2ah) exp - (a2h - 3ah2 + 3h3) d h  + O( I/@), 

provided a = 7/54 is of order unity. If y/@ is large, 

V2@ N -__ 2 J 3 + ~ ( $ ) .  
v3 

These show that, for given large f;, 

where L = (T)) (*)* ( - +)! = 2-54.. . ; in other words, each wake is a shear layer 
of strength proportional to f;-% and thickness of order .$a. Because of the slow 
decay of this layer as f ;  -+ 00 it dominates the velocity field at  large distances 
from the origin in all directions. 

At any point (5, 7) which is outside the shear layer, the contributions from 
neighbouring points ([I, 7’) to the integrals of (21 a )  are negligible, so that 

For small c’, the estimate of the strength of the shear layer is a bad one, but it 
is not necessary to exclude the origin from the integrals of equation (23) for the 
contribution from any finite segment is only O(l/p) and is thus negligible. This 
shows that at  large distances outside the shear layer the dominant velocity field 
associated with @(p, 8) is an irrotationa1 cross flow, described by 

(24) 

If ( f ; , ~ )  lies within the vorticity wake (i.e. 11/54 is of order unity), contributions 
to the integrals (21 u)  from points up to a distance of order @ away are also O(6-8). 

} 
CD = ~ J ~ L ~ ~ c ~ ~ ( + ~ - Q T )  if o < e < 7 ~ ,  

and CD = ~ J ~ L ~ + C O S ( ~ $ + & )  if -T < 8 0. 
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But for these, to a first approximation, it is sufficient to take V2W as effectively 
independent of c'. The contribution to Q7 from more distance points is negligible 
because 7 is small. On integration with respect to [', 

13(a) = (6h2 - 2ah) exp - (a2h - 3ah2 + 3h3) dh .  1: where 

Thus the velocity parallel to O[ changes sign rapidly across the layer, with the 
profile shown in figure 3. This is asymmetric, the maximum velocity being 
within the layer. 

I - 
I I I I 

- 2  o /  2 4 a  

FIGURE 3. The velocity profile within a shear layer; 

I,(a) = Jm (6h2 - 2ah) exp - (a2h - 3ah2 + 3hS) dh. 
0 

For GE, on the other hand, the integral over the region 1 p - g'l = O(@) vanishes 
to this order, because (c-g)/{($-g)z+ (7 - Y ' ) ~ ]  is an odd function of 5'-6. 
More distant parts of the shear layer, however, cannot be ignored, and give rise 
to  a velocity normal to the layer, but effectively constant across it, of magnitude 

The velocities at large distances associated with the other fundamental solu- 
tion O ( [ , q )  are of smaller order and less interesting. From equations (18) and 
(19) it is seen that V 2 0  = O(6-8) as 161 -+ co so that the vorticity wake is no longer 
so dominant. Since, however, VZO is integrable over all space, we may say that 
all velocities O,, 0, vanish a t  least as rapidly as l/p at large distances. 

4 3  LC-8 cos in. 
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8. The motion at extremely large distances 
Now that the appropriate solution of equation (6) has been determined, it is 

relevant to ask whether it is uniformly valid. The region near the origin is covered 
by the inner expansion, but it is not obvious that as p + 00 for given small R 
equation (9) will accurately describe the flow field. 

At these large distances 

V2@ N -I3 - ; @@ a7 = O(p-3). 6 (7 fl+ 
Velocities associated with 0 are smaller. The non-linear terms which have been 
neglected in equation (6) are like 

a 
compared with 7 - V2@ - V4@. 

For large values of 171, the distribution of vorticity V2@ is determined by a 
balance between diffusion parallel to 07 and convection associated with a large 
velocity parallel to 06.  Addition of a small velocity parallel to those associated 
with the shear will make little difference, as is shown by putting C = R*U in 
equations (19) and (20). The leading term in the expansions of 0, @ for large p 
is unaltered. However, a small convection velocity at  right angles to the pre- 
vailing one which does not decrease as rapidly as l/q must be important, for, if 
V2@ N l/q3, the length scale of variations in this direction is of order 7. Thus both 
the uniform stream V and the velocities associated with the perturbations them- 
selves should be take into account, reintroducinganessentially non-linear element 
into the problem. Fortunately for analytical convenience there is little vorticity 
in this region anyhow, and in the dominant area near 7 = 0 a different balance 
obtains. Here the length scale parallel to 07 is of order 53, whereas velocities 
associated with the perturbation are of order 6-3 and are negligible. A uniform 
velocity in this direction, on the other hand, is not, and equation (6) must be 
modified to read a a 

36 a7 
T,I -V~@*+R*V-V~@*-V~@* = 0. (25 )  

The elementary solutions iD*(R, p ,  0) of this equation now depend essentially 
on the parameter R. As in 8s 6 and 7, they may be obtained by superposition of 
diffusing clouds described by equation (13), in which 5 is replaced by 

6 - Ct - &R* Vt2, 
and 7 by 7 - R* Vt. For given R and sufficiently large p they are quite different 
from those obtained when V is zero. A similar expansion procedure shows that 
for positive V/7 

VW* N __ 34377 (T) R*V 3 a e x p ( - f a 2 ) + 0 ( ~ )  R*V 4 
R* V 

where 

as ~ - + c o ,  

Fluid Mech. 12 39 
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For negative V/q ,  and outside the region a = O( l), the vorticity is exponentially 
small. V2@* is of the same magnitude, but the structure within the wake is 
more complex. 

After a large time t ,  the centre of a cloud has drifted through a distance 
q = RfrVt, f ;  = +(R*V) t2, i.e. along one arm of the parabola f; = q2/(2R*V). It 
has also expanded to have dimensions comparable with t g  parallel to Of;, and tJ 
parallel to 07, and outside this region is exponentially small. A uniform con- 
vection velocity parallel to Oc is never sufficient to sweep the cloud clear of any 
given point, whereas one in the perpendicular direction always will, however 
small it  may be. It is thus easy to see why, if RhV is non-zero, the steady-state 
distribution of vorticity is confined to a well defined wake centred on part of 
a parabola and of width ( q / R * V ) f  parallel to Of;, and also why this contrasts 
so completely with the case RfrV = 0. Any small convection term R*U is com- 
pletely masked by the accelerated diffusion parallel to Of;, so its omission from 
equation (25) is justified. 

Although this wake appears fundamentally for large q/(Rg V ) ,  it is convenient 
to regard it as depending on f;, centred on 7 = (2RtVf;)* and of width of order 
(2RtVf;)f in the 7-direction. For both V20* and V2@*, it  is of strength of order 
(RhV)) (20-4, and the integrated vorticity across it must to this order vanish 
(because all the vorticity shed from the cylinder is entirely concentrated in this 
narrow region). Thus it is a true velocity wake, rather than a shear layer, but the 
velocities are of order (R) V)s  t -2 ,  and will be masked by any circulation associ- 
ated with the distribution of vorticity nearer the cylinder. 

Thus, in general, the perturbation velocities associated with 'P are not uni- 
formly valid out to infinity. If, however, V is zero the vorticity distribution 
described by equations (17)) (19) and (20 )  is not significantly modified in the 
regions where it is appreciable, and the shear layers and their associated cross flow 
extend outwards indefinitely. In  any event they are unaffected if p = o(R-*V-~). 
Where this transition takes place the derivatives @:, etc., are extremely small, 
being O(RV2),  and for any given p the difference between the uniformly valid 
solutions @*(R,p) and those of equation (6), @(p) ,  is presumably of this order 
as R -+ 0. Thus to the approximation considered in this paper the regime at  
extremely large distances where small uniform convection velocities are again 
significant is dynamically subsidiary to that at moderate distances, and does not 
substantially affect the flow field there or near the cylinder. 

9. Conclusions 

given boundary conditions of the form 
There is an approximate solution of the Navier-Stokes equation (1) and the 

q+ = q+o(r)+p(Eu+F')  7 - log R* c o s 0 + 3 ( ~ ~ + ~ ~ ) s i n 0 ]  7 - log R* (rlogr--4r+- 

EU+FV 
7 - log R* 

Y ( p )  = Rq+(Rb) = Qq2 + R*( Uy  - V f ; )  + R*g 

H U + K V  
7 - log R* 
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where E, E”, H ,  K ,  r are well determined constants given by equation (8); $,, is 
the Stokes solution round a rotating cylinder in a symmetrical shear flow, 

$o = $(rz - 21og r - 1) - t ( r 2  - 2 + l/r2) cos 219 - Q logr. 

The remaining terms in the expression for $ are the Stokes solution appropriate 
to a non-rotating cylinder in a uniform stream with components 

H U + K V  E U + P V  
@( r - log R* ) ’ - g(xa)’ 

The couple on the cylinder is given solely in terms of the rate of shear and its 
rate of rotation; the linear forces on it are given in terms of its rate of translation, 
made dimensionless using the rate of shear, but not on its rotation. The force is 
only approximately in the direction of translation; if (log R$)-l is not too small 
compared to unity lateral forces appear, given by a tensor relation depending 
on R. At large distances from the cylinder, the velocity approximates to that of 
a uniform simple shear plus a uniform translation: 

Y = $q”-t&(Uq- VC). 

If V is zero, the vorticity of the perturbation from this is, for any given Reynolds 
number, only algebraically small as r + coin all directions, but is mainly confined 
to a shear layer upstream and downstream of the cylinder, of width of order 
and of strength of order (-8. Outside this layer is an irrotational cross flow, with 
velocities of order p-8. If V does not vanish, 0 and should be replaced by 
O* and @*, and the cross flow extends only to a distancep = O(RfV3),  outside 
which all the vorticity is concentrated into a weak wake centred on half the 
parabola E = q2/2R4V, and the flow becomes primarily a conventional circulation. 

The functions $(r) ,  R-lY (Rir), defined in this way, are not separately uniformly 
valid expressions to a solution of the Navier-Stokes equations. The remainder 
after substituting for $ in the left-hand side of equation (1) may be made arbi- 
trarily small compared to the terms retained if r is kept constant and R made 
sufficiently small. For given R, however, the error is large for sufficiently large r.  
More precisely, if we estimate the fourth derivatives of $ arising from different 

1 i2 U logr 
terms they are of order 

r2’ r4’ logR r3 ’ 
where U and V are assumed comparable, whereas the non-linear terms are of order 

R ( T g r ’ r  r r2logR’ r3 * 

- - _ _ _ ~  

Ulogr Q) (1 Ulogr Q) 
x -,- - 

The ratio of the largest of the second group to the largest of the first is 

throughout the region r > 1. The inner boundary condition is satisfied exactly 
by $(r) ;  the outer not at all. 

39-2 
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Substitution for YP in equation (1) shows that the neglected non-linear terms 
are like 

which must be compared with 

For small p, the proportional error is 

Thus, provided RiU tends to zero with R, the equation for Y is uniformly valid 
right into the origin. This is not surprising, for although the linearization on to 
a uniform shear becomes a bad approximation at the origin, the non-linear 
terms are small anyhow. It does not, however, satisfy the boundary conditions 
on the cylinder. At extremely large distances it is still uniformly valid, provided 
0 and @ are replaced by the corresponding solutions 0” and @* of equation (25). 

In  the region 1 < r 4 B a  the two functions $ and B-IY(Rb) are nearly 
identical. A sensitive test is to compare the first three derivatives with respect 
to r of their difference with the magnitude of the corresponding derivatives of $. 
For the third derivatives the neglected terms are 

to  be compared with 

o(-”-””’) logR3 r2 +.(?) 
I f  U is larger than O(R-4 log R*) the proportional error is 

Q log R4 

and for the lower derivatives it is smaller because of the inclusion of the perfectly 
matched shear term. 

Thus, provided U ,  V and Cl are restricted to be O(1og R&)N for some N ,  the 
function defined by $ ( r )  out to a region r = O(R-i), by R-lY(R*r) from there 
to R b  = O(R--%V7-3), and by R-lY*(R, R b )  outside that, apparently provides 
an approximate solution of the Navier-Stokes equations and the boundary con- 
ditions which is uniformly valid everywhere as r -+ 0. It is difficult to attach 
precise meaning to the errors involved, depending on whether they are absolute 
or proportional to the magnitude of the velocity perturbation from the flow field 
at infinity. Near the cylinder they would appear to be O(R-f) if based on the 
error in the matching process or O[R-a(log Ri))N] if based on the next term of 
the expansion. 
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A ‘substance’ diffusing from an instantaneous line of release in a uniform 
simple shear is carried into an elliptical distribution, the major axis of which is 
eventually nearly parallel to the streamlines. After a large time t the major axis 
is of a length of order (v/G)* (G@, whereas the minor axis is only of order (vt)i. 
This is an example of accelerated longitudinal diffusion in a non-uniform stream 
first described by Taylor (1953). 

The centre of such a cloud is always carried downstream less rapidly than the 
cloud expands, and the concentration at the point of release falls only algebraic- 
ally, not exponentially with time. If, however, a convection velocity at  right 
angles to the shear flow is superposed, the decay is exponential. Round a main- 
tained line source with no lateral convection twin wakes extend both upstream 
and downstream, but the substance is also spread over all space, and a continued 
interchange takes place between the wakes. Wake structure and source resistance 
are given by equations (16) to (18). From a dipole at right angles to the flow the 
shear separates ‘substance’ of opposite sign, so that each wake is predominantly 
of one polarity. Any small lateral convection, however, completely modifies this 
distribution at large enough distances, the concentration being exponentially 
small outside a region centred on half a parabola. 

The perturbation velocit,y at very large distances round any two-dimensional 
obstacle a t  any Reynolds number in an infinite simple shear must be given by 
these considerations, for the diffusion processes apply to any small perturbation 
vorticity, however, it arises. In  general, the obstacle must behave like a dipole, 
for if it  continually shed net vorticity an infinite circulation would be set up. 
If the local velocity of the undisturbed fluid at the obstacle is entirely longi- 
tudinal the dominant perturbation velocity at very large distances will be a 
cross flow of order p-* associated with two shear layers. If there is lateral motion 
past the obstacle an ordinary circulation will be dominant. However, unlike 
the case of an obstacle in a uniform stream, it does not seem possible to relate 
these motions to the forces on the obstacle. 

All these results may be seriously modified if there are lateral boundaries to 
the shear, even at quite large distances. How large any wall effect would be is 
not easy to estimate, and deserves further study. 

The author acknowledges many helpful comments on this analysis at all 
stages from Dr I. Proudman and Dr F. Ursell, and also a suggestion from 
Dr A. A. Townsend which prompted much of the interpretation. 
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